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ABSTRACT 
 

In this work, we introduce RT-Kubernetes, software architecture for deploying applications that operate in real 

time inside of containers on cloud platforms. Implementing Containers with A hierarchical real-time scheduler 

based on the Linux SCHED DEADLINE policy ensures CPU scheduling at all times. Initial experimental 

findings show that this new architecture is able to provide high temporal isolation among containers co-located 

on the same physical hosts, while still delivering timeliness guarantees in the specified responsiveness range. 

 

1 INTRODUCTION 
 

As a result of their widespread adoption and 

improvement over the past few years, cloud 

computing and containerization technologies are 

now a common and efficient means of deploying 

applications across shared and plentiful hardware 

resources. Can easily expand to meet the needs of 

an ever-changing workload [9] while still meeting 

the strict time constraints imposed by applications. 

Novel cloud robotics and cloud-enhanced industrial 

automation scenarios require these technologies, 

and recent advancements in hardware and software 

infrastructures are beginning to make them suitable 

for serving such applications with tight and precise 

timing constraints. However, when enhancing real-

time applications with components deployed in 

remote cloud infrastructures, it is not as simple to 

provide end-to-end responsiveness guarantees. This 

occurs for a number of reasons, the most common 

of which are networking latency and the processing 

times of remote servers. 

It is possible to reduce network latency by using 

general-purpose Quos management methods over 

TCP/IP, such as Diffuser [8, 10], or by switching 

back to primarily private cloud infrastructures of 

the industrial/robotic plant, where the whole 

networking channel is under the owner's exclusive 

supervision. Fog/edge architectures [6] are an 

option, since they allow for latency-sensitive parts 

to be hosted on nodes closer to the end users. 

But distant servers with a normal cloud software 

stack have a hard time meeting the stringent timing 

requirements and scheduling assurances, instead 

providing extremely variable processing speeds 

that change often based on the other workloads 

running on the same cloud server. Elastic control 

loops [13] that dynamically adjust the number of 

instances of scalable cloud services are often used 

to solve this problem in cloud computing and 

distributed service-oriented computing. 

However, owing to virtualization overheads or 

interference from other collocated instances on the 

same servers or physical CPUs, this method is 

unable to accommodate the variety of processing 

times of individual instances and their variations. 

This article introduces an orchestration framework 

for real-time multi-core containers based on 

Cabernets that solves this problem by enabling the 

scheduling of real-time containers while 

simultaneously providing them with the resources 

they need to do their tasks. Results are certainly 

ensured. 

 

2 BACKGROUNDS 
 

While the term "container" may be used in a variety 

of ways, it is often understood to refer to an 

isolated execution environment that contains one or 

more processes or threads (tasks). General). Some 

of the activities in this profession are characterized 

by tight deadlines. They may take the shape of a 

Direct Acyclic Graph (DAG) [5, 17], a collection 

of recurring or one-off tasks with associated due 
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dates, or any other organizational scheme (such as 

a hierarchy or network). In any instance, the time 

restrictions of an application may be respected by 

conducting a detailed real-time schedulability 

analysis and then creating suitable scheduling 

parameters. Applications operating in virtual 

machines (VMs) or containers (containers) may be 

guaranteed to execute on time with the help of 

approaches like the so-called Compositional 

Scheduling Framework [12, 20] (CSF) or others 

that rely on analysis of the specific application [1, 

5]. Each virtual CPU in this configuration is 

allotted a certain percentage of the available 

physical CPU time at the beginning of each 

session. The Linux SCHED DEADLINE policy 

[15] is an example of a reservation-based 

scheduler. Typically, a user space containerization 

software stack, such as Cabernets, controls the use 

of a set of kernel functions or virtualization 

technologies to realize containers. Kubernetes 

orchestrates the running of containerized 

applications across a cluster of computers that may 

either serve as master nodes (also known as control 

nodes) or as worker nodes (also known as simply 

nodes). Containerized apps are executed on worker 

nodes while the Kubernetes control plane is hosted 

on master nodes. 

A "Pod" is the fundamental building block of 

Kubernetes, consisting of one or more containers, 

networking, and storage resources. Multiple, 

independently deployable services (micro services) 

make up Kubernetes' distributed architecture. Upon 

the various cluster nodes. Specifically, the 

Kubernetes Scheduler (which is hosted on the 

master node) is in charge of deciding which worker 

node a Pod will be executed on, and the Sublets 

(which are hosted on each worker node) are in 

charge of managing how Pods are run. 

The Sublet initiates the containers that make up the 

Pods by calling a container runtime; many 

container runtimes are available, including the 

widely used Dicker. Both hypervisor-based VMs 

(as in kite containers1) and OS-level virtualization 

based on Linux control groups and namespaces are 

viable options for the container runtime's 

implementation of containers. By reserving 

resources for the hypervisor's virtual CPUs during 

scheduling, real-time assurances may be made. 

This necessitates a reservation-based scheduler 

inside the hypervisor (Oxen, for example, 

implements the Real-Time Deferrable Server — 

RTDS — algorithm [14]), whereas hosted 

hypervisors like KVM may employ the SCHED 

DEADLINE scheduling policy to service their 

virtual CPU threads [2]. Implementing the 

containers with Linux control groups and 

namespaces necessitates a change to the mainline 

Linux scheduler in order to provide a reliable 

response time. The SCHED DEADLINE policy is 

used by the Hierarchical CBS (HCBS) scheduler 

[1] to schedule groups of jobs (groups, in Linux 

parlance), and it may be extended to containers 

(ensuring that each CPU in the container can run 

for a certain amount of time and every period%). 

As a result of this effort, Cabernets is now able to 

provide real-time assurances to containerized 

applications by supporting the HCBS scheduler. 

Lastly, it is not enough to just choose a suitable 

scheduling strategy when containerizing real-time 

systems; the algorithm must also be implemented 

correctly, therefore minimizing the performance 

degradation that might otherwise result from 

improper containerization. Bring kernel latencies 

[4] down to reasonable levels. Therefore, the host 

computer requires the Linux Pre-empt- RT patch 

set [19]. 

 

3 DESIGNS AND 

IMPLEMENTATION 
 

Our real-time containerization platform is based on 

a suitable CPU scheduling method, a low-latency 

host kernel, and the other components outlined in 

Section 2. (Or bare-metal hypervisor), and some 

kind of container management software that 

facilitates the proper implementation of the 

previously specified CPU scheduling technique. 

Existing schedulers may be used for the CPU 

scheduling mechanism, including the Xen RTDS, 

the Linux kernel's SCHED DEADLINE policy, and 

the HCBS scheduling patch (enabling to utilize 

SCHED DEADLINE for groups of tasks rather 

than individual processes or threads). As an 

alternative, the container management software 

necessitates tweaks to current open-source 

initiatives. This document details how this 

functionality was added to RT-Kubernetes. 

 

Figure 1: Real-Time Containers scheduling 

architecture. 

As the major contribution of this study, our update 

to the Kubernetes software stands out. 

Scheduling system design, as shown in Figure 1. 

Hub for every employee (with " CPU cores) is 

capable of hosting multiple containers, and the 8Ch 

container can use all eight cores to power real-time 

programs. Each of these cores is assigned work 

through a CPU reservation, with &8 period units 
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per period%8 set aside for the container's real-time 

activities or threads. The user provides 

RTKubernetes with information about the timing 

requirements of the hosted applications during 

container instantiation, and RTKubernetes then 

chooses the appropriate worker node on which to 

start each container and assigns the correct 8, &8 

and%8 scheduling parameters to the container. 

Exploiting the multi-processor resource model 

(MPR) in [12] is one method of doing this. In light 

of the foregoing, RTKubernetes must support the 

description of the temporal requirements (or the 

real-time constraints) of the application that is to be 

containerized, and use this description to compute 

the scheduling parameters of the container (the 

runtime and period of the real-time control group, 

or the runtime and period of the virtual CPU 

threads if a hypervisor is used). Next, it needs to 

generate the required containers/VMs, configure 

them, and pick the node where they will be 

launched (this includes configuring the host and 

guest schedulers). The application will be deployed 

to Kubernetes and operate in a Pod according to the 

specifications defined in a YAML "manifest" file. 

This manifest is sent to the Kubernetes API server 

through a command line tool. (kubectl); thereafter, 

the API server talks to the Kubernetes Scheduler to 

have a worker node assigned to the Pod, and the 

Kubelet on that node receives the YAML 

description. The container is then created and 

parsed by the Kubelet. As a result, Kubernetes 

needs to have a few crucial functionalities 

implemented in order to handle real-time 

applications. To begin, the manifest files' format 

has to be expanded to include the data necessary to 

meet the application's real-time demands. The 

Kubernetes Scheduler then has to be adjusted such 

that a worker node is chosen to execute a Pod only 

if it is capable of hosting the containerized 

application without causing any missed deadlines. 

Last but not least, Kubelet has to be adjusted so 

that it can work in tandem with the deadline 

scheduler (in this case, to schedule the containers 

inside of Pods using the right algorithm and 

settings). 

All the real-time jobs that make up the program, 

together with their temporal parameters, 

restrictions, and dependencies, would be 

fascinating to add to the application's description in 

the manifest file. Kubernetes uses this data to 

determine how many CPU cores the container 

needs and how to schedule them (the runtimes and 

durations of the CPU reservations). This study and 

design is often application-specific [1], therefore it 

cannot be integrated into a standard container 

management tool. Therefore, the current version of 

the RT-Kubernetes manifest files provides the 

runtime and term for the container's reservations, as 

well as the number of CPU cores utilized by the 

container (a similar technique is used by RT-

OpenStack [21] as well). In summary, the format 

has been updated to provide the specification of an 

"rt runtime," an "rt period," and an "RT cpu" field 

(the number of cores on which the container may 

run real-time processes or threads). Some container 

runtimes (because this interface is part of the 

standard RT control group) already offer support 

for "rt-runtime" and "rt-period," while others (like 

Dicker) do not. So, the Sublet has been updated in 

this study to make advantage of these settings apart 

from the container runtime. Also of note is how the 

new "rt CPU" feature differs from the older "cpu" 

attribute that Kubernetes currently supports. The 

new property has no effect on anything but 

scheduling. When the HCBS scheduler is utilized, 

processes or threads that need real-time scheduling 

(SCHED FIFO or SCHED RR) will be prioritized. 

The HCBS scheduler makes it feasible to design a 

container with a high number of CPU cores; 

limiting real-time tasks to a restricted fraction of 

those cores (this is not possible when a hypervisor 

is used). The new syntax makes it possible to 

reserve a certain number of CPU cores for a certain 

length of time (in the form of "rt runtime") and for 

a specific container. The kernel's HCBS scheduler 

will not schedule real-time jobs on CPU cores with 

0 runtime, therefore this is achieved by creating a 

multi-core CPU reservation on the physical host 

with the specified runtime and period. Since a 

(&,%) reservation can only be properly served by 

the host CPU scheduler if an admission test is 

passed (guaranteeing & every % execution time 

units on AC 2?D CPUs), RT-Kubernetes must 

ensure that a Pod is started on a worker node only 

if the reservations for that Pod pass the admission 

test on that node. As was noted, new functionality 

requires a change to the Kubernetes Scheduler, 

which determines which worker node a Pod will be 

launched on. Depending on the desired level of 

granularity in terms of real-time assurances, a 

number of alternative approaches are feasible when 

creating an admission test in the Kubernetes 

Scheduler (hard [7, 16] or soft [11]). 

The most basic kind of admission test calculates the 

utilization * as the sum of the utilizations *8 = 

&8/%8 for all the reservations (&8, %8) on a node 

and compares it with a predetermined threshold. 

Although not the most efficient, the Cabernets 

Scheduler has been updated to include a utilization-

based admission test so that it may be used to 

provide both hard and soft real-time guarantees. In 

particular, the RT-Cabernets Scheduler guarantees 

that the sum of all containers' real-time usage 8 *8 

on a worker node does not exceed the limit you set. 

It's important to note that this is similar to what the 

default Kubernetes Scheduler does for the 

"Guaranteed" Quos class; however, the RT-

Kubernetes Scheduler is better equipped to deal 

with the needs of real-time tasks and is more in line 

with the schedulability guarantees provided by real-
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time theory. If this restriction is set to (" + 1)/2 

(where " is the number of physical cores present on 

the node), then the reservations are guaranteed to 

be schedulable (provided that RT-Sublet utilizes 

proper methods to correlate CPU reservations to 

physical CPU cores — see the next paragraph). 

Sublet on a worker node is responsible for 

launching the Pod's containers after a worker node 

has been selected by the Kubernetes Scheduler. In 

light of this need, Kubelet has been modified to 

provide time-sensitive scheduling. Because of the 

containers, we have RT-Kubelet. While By default, 

Kubelet use the Linux Container File System (CFS) 

to plan when containers will run. RT-Kubelet uses 

CFS quotas and a timekeeper (similar to the POSIX 

SCHED OTHER policy) to control resource 

allocation. Has real-time runtime and duration 

tuning for containers. collection depending on 

values specified in the manifest file to guarantee 

access to the HCBS planner.= The program failed 

to launch on any of the actual system's CPU cores 

since the initial HCBS scheduler always allocated 

the necessary amount of time for each run. A CPU 

switching option labelled rt (which lets you set 

runtime to be available exclusively on a certain 

processor). Constraint on the available processors. 

The scheduler has thought of a way to fix this. The 

redesigned user interface allows for simultaneous 

scheduling of many runs. Real-time processes 

within a container are not allowed to execute on 

these CPU cores, enabling RT-Kubelet to establish 

a goal runtime of zero.  Whenever RT-Kubelet 

starts a container with rt cpu > " (where " is the 

total number of physical cores), the scheduler is 

responsible for determining on which actual cores 

the container's real-time tasks will be carried out. 

Applying the "What-Fits-Worst" (WF) principle to 

What-Fits-First the (FF) heuristics have been 

developed, and they may be used on many of the 

options below. Worst-Fit helps to distribute the 

real-time burden. The utilized admissions control 

mechanism is compatible with First-Fit, allowing 

the RT-Kubernetes Scheduler to more efficiently 

distribute work over all available CPU cores. When 

it comes to serving containers in real time, the 

"conventional" method is based on statically 

allocating a complete set of CPU cores to the 

container (using, for instance, Docker Compose). 

Guaranteed service quality thanks to Kubernetes' 

"fixed" CPU management approach 

(GuaranteedQoS policy). Over provisioning the 

container's resources is required, but the strategy 

opens the way for consistent real-time functioning 

for containerized applications. Further, each and 

every computer's brain Regardless matter how little 

of the cores' immediate responsibilities are actually 

being used by the application, no other containers 

may utilize the cores belonging to the container. 

Instead, RT-Kubelet may employ the HCBS 

scheduler to allocate just a subset of CPUs to time-

sensitive tasks, allowing containers to share the 

remaining CPUs. 

 

4 EXPERIMENTAL VALIDATIONS 
 

Both the Kubernetes Scheduler and Kubelet, upon 

which the proposed changes are based, are now 

open-source2. A wide range of hardware, from a 

Comparison of a 4-core Intel NUC against a 40-

core Xeon server Running a CPU-intensive 

program within containers with different 

scheduling settings and checking that the 

application gets the allotted amount of time 

validates RT-ability Kubelet's to appropriately 

drive the HCBS scheduler in the first set of tests. 

Multiple simultaneous real-time experiments 

 

Figure 2 shows the experimental cumulative 

distribution functions (CDFs) for the standard 

deviations of the measured response times in a real-

time and a standard container. Parallel container 

processes have been initiated, and their correctness 

has been confirmed. Containerized workloads are 

scheduled on available CPU cores (no core is 

overcrowded and all containers are allowed to run 

for the allotted time). We have now confirmed that 

RT-Kubernetes is able to adhere to the time-based 

requirements of apps. This was accomplished by 

monitoring the latency of several tasks inside a 

containerized real-time application. Parameters for 

the container's scheduler have been calculated in 

accordance with MPR [12], ensuring that all tasks 

complete in less time than their allotted periods. 

Testing has been done to ensure that all deadlines 

are fulfilled when the container's scheduling 

parameters are allocated based on the MPR 

analysis for a variety of real-time task counts (from 

4 to 10), execution timings and durations (created 

at random), and total utilizations (* = 0.5 to * = 

1.8). 

For a real-time application hosted in a container, 

the experimental Cumulative Distribution Function 

(CDF) of the normalized response times (response 

times divided by the task duration) is shown in 

http://www.jbstonline.com/
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Figure 2. If the plot converges on 1 for a value of 

normalized reaction time lower than 1, and then all 

real-time limitations have been met. This CDF 

represents the percentage of task activations (on the 

Y axis) that experienced a normalized response 

time smaller than A (on the X axis). There are two 

plots in this figure: Results acquired with a patched 

version of Kubernetes are shown in "Real-Time 

Container," whereas results obtained with a non-

patched version of Kubernetes are displayed in 

"Standard Container." It is clear that all time limits 

are being adhered to in the "Real- Time Container" 

plot, but the other plot reveals that roughly 10% of 

the tasks' activations conclude beyond the 

conclusion of the task period. 

 

5 CONCLUSIONS 
 

This work introduced RT-Kubernetes, which 

provides theoretically sound support for deploying 

multi-core real-time containers. The suggested 

design can efficiently support real-time 

components of software that must meet strict time 

limits in a container environment. It has been 

demonstrated through a series of experiments that 

the new RT-Kubernetes Scheduler can properly 

assign real-time containers to nodes that can 

properly serve them (respecting all the temporal 

constraints), and that the new RT-Kubelet can 

configure the scheduling parameters of the 

containers in such a way as to guarantee that the 

temporal constraints of the containerized 

applications are respected. 
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