
Dr.C.Jaya Prakash etal, JBio sci Tech, Vol 09(2),2021, 01-06
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 1

Real-Time Cloud Computing with RT-Kubernetes: A

Containerized Approach
Dr.C.Jaya Prakash

Professor, Department of CSE

Malla Reddy College of Engineering for Women

Maisammaguda., Medchal., TS, India

 Article Info

 Received: 29-05-2021 Revised: 18-06-2021 Accepted: 28-06-2021

ABSTRACT

In this work, we introduce RT-Kubernetes, software architecture for deploying applications that operate in real

time inside of containers on cloud platforms. Implementing Containers with A hierarchical real-time scheduler

based on the Linux SCHED DEADLINE policy ensures CPU scheduling at all times. Initial experimental

findings show that this new architecture is able to provide high temporal isolation among containers co-located

on the same physical hosts, while still delivering timeliness guarantees in the specified responsiveness range.

1 INTRODUCTION

As a result of their widespread adoption and

improvement over the past few years, cloud

computing and containerization technologies are

now a common and efficient means of deploying

applications across shared and plentiful hardware

resources. Can easily expand to meet the needs of

an ever-changing workload [9] while still meeting

the strict time constraints imposed by applications.

Novel cloud robotics and cloud-enhanced industrial

automation scenarios require these technologies,

and recent advancements in hardware and software

infrastructures are beginning to make them suitable

for serving such applications with tight and precise

timing constraints. However, when enhancing real-

time applications with components deployed in

remote cloud infrastructures, it is not as simple to

provide end-to-end responsiveness guarantees. This

occurs for a number of reasons, the most common

of which are networking latency and the processing

times of remote servers.

It is possible to reduce network latency by using

general-purpose Quos management methods over

TCP/IP, such as Diffuser [8, 10], or by switching

back to primarily private cloud infrastructures of

the industrial/robotic plant, where the whole

networking channel is under the owner's exclusive

supervision. Fog/edge architectures [6] are an

option, since they allow for latency-sensitive parts

to be hosted on nodes closer to the end users.

But distant servers with a normal cloud software

stack have a hard time meeting the stringent timing

requirements and scheduling assurances, instead

providing extremely variable processing speeds

that change often based on the other workloads

running on the same cloud server. Elastic control

loops [13] that dynamically adjust the number of

instances of scalable cloud services are often used

to solve this problem in cloud computing and

distributed service-oriented computing.

However, owing to virtualization overheads or

interference from other collocated instances on the

same servers or physical CPUs, this method is

unable to accommodate the variety of processing

times of individual instances and their variations.

This article introduces an orchestration framework

for real-time multi-core containers based on

Cabernets that solves this problem by enabling the

scheduling of real-time containers while

simultaneously providing them with the resources

they need to do their tasks. Results are certainly

ensured.

2 BACKGROUNDS

While the term "container" may be used in a variety

of ways, it is often understood to refer to an

isolated execution environment that contains one or

more processes or threads (tasks). General). Some

of the activities in this profession are characterized

by tight deadlines. They may take the shape of a

Direct Acyclic Graph (DAG) [5, 17], a collection

of recurring or one-off tasks with associated due

http://www.jbstonline.com/

Dr.C.Jaya Prakash etal, JBio sci Tech, Vol 09(2),2021, 01-06
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 2

dates, or any other organizational scheme (such as

a hierarchy or network). In any instance, the time

restrictions of an application may be respected by

conducting a detailed real-time schedulability

analysis and then creating suitable scheduling

parameters. Applications operating in virtual

machines (VMs) or containers (containers) may be

guaranteed to execute on time with the help of

approaches like the so-called Compositional

Scheduling Framework [12, 20] (CSF) or others

that rely on analysis of the specific application [1,

5]. Each virtual CPU in this configuration is

allotted a certain percentage of the available

physical CPU time at the beginning of each

session. The Linux SCHED DEADLINE policy

[15] is an example of a reservation-based

scheduler. Typically, a user space containerization

software stack, such as Cabernets, controls the use

of a set of kernel functions or virtualization

technologies to realize containers. Kubernetes

orchestrates the running of containerized

applications across a cluster of computers that may

either serve as master nodes (also known as control

nodes) or as worker nodes (also known as simply

nodes). Containerized apps are executed on worker

nodes while the Kubernetes control plane is hosted

on master nodes.

A "Pod" is the fundamental building block of

Kubernetes, consisting of one or more containers,

networking, and storage resources. Multiple,

independently deployable services (micro services)

make up Kubernetes' distributed architecture. Upon

the various cluster nodes. Specifically, the

Kubernetes Scheduler (which is hosted on the

master node) is in charge of deciding which worker

node a Pod will be executed on, and the Sublets

(which are hosted on each worker node) are in

charge of managing how Pods are run.

The Sublet initiates the containers that make up the

Pods by calling a container runtime; many

container runtimes are available, including the

widely used Dicker. Both hypervisor-based VMs

(as in kite containers1) and OS-level virtualization

based on Linux control groups and namespaces are

viable options for the container runtime's

implementation of containers. By reserving

resources for the hypervisor's virtual CPUs during

scheduling, real-time assurances may be made.

This necessitates a reservation-based scheduler

inside the hypervisor (Oxen, for example,

implements the Real-Time Deferrable Server —

RTDS — algorithm [14]), whereas hosted

hypervisors like KVM may employ the SCHED

DEADLINE scheduling policy to service their

virtual CPU threads [2]. Implementing the

containers with Linux control groups and

namespaces necessitates a change to the mainline

Linux scheduler in order to provide a reliable

response time. The SCHED DEADLINE policy is

used by the Hierarchical CBS (HCBS) scheduler

[1] to schedule groups of jobs (groups, in Linux

parlance), and it may be extended to containers

(ensuring that each CPU in the container can run

for a certain amount of time and every period%).

As a result of this effort, Cabernets is now able to

provide real-time assurances to containerized

applications by supporting the HCBS scheduler.

Lastly, it is not enough to just choose a suitable

scheduling strategy when containerizing real-time

systems; the algorithm must also be implemented

correctly, therefore minimizing the performance

degradation that might otherwise result from

improper containerization. Bring kernel latencies

[4] down to reasonable levels. Therefore, the host

computer requires the Linux Pre-empt- RT patch

set [19].

3 DESIGNS AND

IMPLEMENTATION

Our real-time containerization platform is based on

a suitable CPU scheduling method, a low-latency

host kernel, and the other components outlined in

Section 2. (Or bare-metal hypervisor), and some

kind of container management software that

facilitates the proper implementation of the

previously specified CPU scheduling technique.

Existing schedulers may be used for the CPU

scheduling mechanism, including the Xen RTDS,

the Linux kernel's SCHED DEADLINE policy, and

the HCBS scheduling patch (enabling to utilize

SCHED DEADLINE for groups of tasks rather

than individual processes or threads). As an

alternative, the container management software

necessitates tweaks to current open-source

initiatives. This document details how this

functionality was added to RT-Kubernetes.

Figure 1: Real-Time Containers scheduling

architecture.

As the major contribution of this study, our update

to the Kubernetes software stands out.

Scheduling system design, as shown in Figure 1.

Hub for every employee (with " CPU cores) is

capable of hosting multiple containers, and the 8Ch

container can use all eight cores to power real-time

programs. Each of these cores is assigned work

through a CPU reservation, with &8 period units

http://www.jbstonline.com/

Dr.C.Jaya Prakash etal, JBio sci Tech, Vol 09(2),2021, 01-06
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 3

per period%8 set aside for the container's real-time

activities or threads. The user provides

RTKubernetes with information about the timing

requirements of the hosted applications during

container instantiation, and RTKubernetes then

chooses the appropriate worker node on which to

start each container and assigns the correct 8, &8

and%8 scheduling parameters to the container.

Exploiting the multi-processor resource model

(MPR) in [12] is one method of doing this. In light

of the foregoing, RTKubernetes must support the

description of the temporal requirements (or the

real-time constraints) of the application that is to be

containerized, and use this description to compute

the scheduling parameters of the container (the

runtime and period of the real-time control group,

or the runtime and period of the virtual CPU

threads if a hypervisor is used). Next, it needs to

generate the required containers/VMs, configure

them, and pick the node where they will be

launched (this includes configuring the host and

guest schedulers). The application will be deployed

to Kubernetes and operate in a Pod according to the

specifications defined in a YAML "manifest" file.

This manifest is sent to the Kubernetes API server

through a command line tool. (kubectl); thereafter,

the API server talks to the Kubernetes Scheduler to

have a worker node assigned to the Pod, and the

Kubelet on that node receives the YAML

description. The container is then created and

parsed by the Kubelet. As a result, Kubernetes

needs to have a few crucial functionalities

implemented in order to handle real-time

applications. To begin, the manifest files' format

has to be expanded to include the data necessary to

meet the application's real-time demands. The

Kubernetes Scheduler then has to be adjusted such

that a worker node is chosen to execute a Pod only

if it is capable of hosting the containerized

application without causing any missed deadlines.

Last but not least, Kubelet has to be adjusted so

that it can work in tandem with the deadline

scheduler (in this case, to schedule the containers

inside of Pods using the right algorithm and

settings).

All the real-time jobs that make up the program,

together with their temporal parameters,

restrictions, and dependencies, would be

fascinating to add to the application's description in

the manifest file. Kubernetes uses this data to

determine how many CPU cores the container

needs and how to schedule them (the runtimes and

durations of the CPU reservations). This study and

design is often application-specific [1], therefore it

cannot be integrated into a standard container

management tool. Therefore, the current version of

the RT-Kubernetes manifest files provides the

runtime and term for the container's reservations, as

well as the number of CPU cores utilized by the

container (a similar technique is used by RT-

OpenStack [21] as well). In summary, the format

has been updated to provide the specification of an

"rt runtime," an "rt period," and an "RT cpu" field

(the number of cores on which the container may

run real-time processes or threads). Some container

runtimes (because this interface is part of the

standard RT control group) already offer support

for "rt-runtime" and "rt-period," while others (like

Dicker) do not. So, the Sublet has been updated in

this study to make advantage of these settings apart

from the container runtime. Also of note is how the

new "rt CPU" feature differs from the older "cpu"

attribute that Kubernetes currently supports. The

new property has no effect on anything but

scheduling. When the HCBS scheduler is utilized,

processes or threads that need real-time scheduling

(SCHED FIFO or SCHED RR) will be prioritized.

The HCBS scheduler makes it feasible to design a

container with a high number of CPU cores;

limiting real-time tasks to a restricted fraction of

those cores (this is not possible when a hypervisor

is used). The new syntax makes it possible to

reserve a certain number of CPU cores for a certain

length of time (in the form of "rt runtime") and for

a specific container. The kernel's HCBS scheduler

will not schedule real-time jobs on CPU cores with

0 runtime, therefore this is achieved by creating a

multi-core CPU reservation on the physical host

with the specified runtime and period. Since a

(&,%) reservation can only be properly served by

the host CPU scheduler if an admission test is

passed (guaranteeing & every % execution time

units on AC 2?D CPUs), RT-Kubernetes must

ensure that a Pod is started on a worker node only

if the reservations for that Pod pass the admission

test on that node. As was noted, new functionality

requires a change to the Kubernetes Scheduler,

which determines which worker node a Pod will be

launched on. Depending on the desired level of

granularity in terms of real-time assurances, a

number of alternative approaches are feasible when

creating an admission test in the Kubernetes

Scheduler (hard [7, 16] or soft [11]).

The most basic kind of admission test calculates the

utilization * as the sum of the utilizations *8 =

&8/%8 for all the reservations (&8, %8) on a node

and compares it with a predetermined threshold.

Although not the most efficient, the Cabernets

Scheduler has been updated to include a utilization-

based admission test so that it may be used to

provide both hard and soft real-time guarantees. In

particular, the RT-Cabernets Scheduler guarantees

that the sum of all containers' real-time usage 8 *8

on a worker node does not exceed the limit you set.

It's important to note that this is similar to what the

default Kubernetes Scheduler does for the

"Guaranteed" Quos class; however, the RT-

Kubernetes Scheduler is better equipped to deal

with the needs of real-time tasks and is more in line

with the schedulability guarantees provided by real-

http://www.jbstonline.com/

Dr.C.Jaya Prakash etal, JBio sci Tech, Vol 09(2),2021, 01-06
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 4

time theory. If this restriction is set to (" + 1)/2

(where " is the number of physical cores present on

the node), then the reservations are guaranteed to

be schedulable (provided that RT-Sublet utilizes

proper methods to correlate CPU reservations to

physical CPU cores — see the next paragraph).

Sublet on a worker node is responsible for

launching the Pod's containers after a worker node

has been selected by the Kubernetes Scheduler. In

light of this need, Kubelet has been modified to

provide time-sensitive scheduling. Because of the

containers, we have RT-Kubelet. While By default,

Kubelet use the Linux Container File System (CFS)

to plan when containers will run. RT-Kubelet uses

CFS quotas and a timekeeper (similar to the POSIX

SCHED OTHER policy) to control resource

allocation. Has real-time runtime and duration

tuning for containers. collection depending on

values specified in the manifest file to guarantee

access to the HCBS planner.= The program failed

to launch on any of the actual system's CPU cores

since the initial HCBS scheduler always allocated

the necessary amount of time for each run. A CPU

switching option labelled rt (which lets you set

runtime to be available exclusively on a certain

processor). Constraint on the available processors.

The scheduler has thought of a way to fix this. The

redesigned user interface allows for simultaneous

scheduling of many runs. Real-time processes

within a container are not allowed to execute on

these CPU cores, enabling RT-Kubelet to establish

a goal runtime of zero. Whenever RT-Kubelet

starts a container with rt cpu > " (where " is the

total number of physical cores), the scheduler is

responsible for determining on which actual cores

the container's real-time tasks will be carried out.

Applying the "What-Fits-Worst" (WF) principle to

What-Fits-First the (FF) heuristics have been

developed, and they may be used on many of the

options below. Worst-Fit helps to distribute the

real-time burden. The utilized admissions control

mechanism is compatible with First-Fit, allowing

the RT-Kubernetes Scheduler to more efficiently

distribute work over all available CPU cores. When

it comes to serving containers in real time, the

"conventional" method is based on statically

allocating a complete set of CPU cores to the

container (using, for instance, Docker Compose).

Guaranteed service quality thanks to Kubernetes'

"fixed" CPU management approach

(GuaranteedQoS policy). Over provisioning the

container's resources is required, but the strategy

opens the way for consistent real-time functioning

for containerized applications. Further, each and

every computer's brain Regardless matter how little

of the cores' immediate responsibilities are actually

being used by the application, no other containers

may utilize the cores belonging to the container.

Instead, RT-Kubelet may employ the HCBS

scheduler to allocate just a subset of CPUs to time-

sensitive tasks, allowing containers to share the

remaining CPUs.

4 EXPERIMENTAL VALIDATIONS

Both the Kubernetes Scheduler and Kubelet, upon

which the proposed changes are based, are now

open-source2. A wide range of hardware, from a

Comparison of a 4-core Intel NUC against a 40-

core Xeon server Running a CPU-intensive

program within containers with different

scheduling settings and checking that the

application gets the allotted amount of time

validates RT-ability Kubelet's to appropriately

drive the HCBS scheduler in the first set of tests.

Multiple simultaneous real-time experiments

Figure 2 shows the experimental cumulative

distribution functions (CDFs) for the standard

deviations of the measured response times in a real-

time and a standard container. Parallel container

processes have been initiated, and their correctness

has been confirmed. Containerized workloads are

scheduled on available CPU cores (no core is

overcrowded and all containers are allowed to run

for the allotted time). We have now confirmed that

RT-Kubernetes is able to adhere to the time-based

requirements of apps. This was accomplished by

monitoring the latency of several tasks inside a

containerized real-time application. Parameters for

the container's scheduler have been calculated in

accordance with MPR [12], ensuring that all tasks

complete in less time than their allotted periods.

Testing has been done to ensure that all deadlines

are fulfilled when the container's scheduling

parameters are allocated based on the MPR

analysis for a variety of real-time task counts (from

4 to 10), execution timings and durations (created

at random), and total utilizations (* = 0.5 to * =

1.8).

For a real-time application hosted in a container,

the experimental Cumulative Distribution Function

(CDF) of the normalized response times (response

times divided by the task duration) is shown in

http://www.jbstonline.com/

Dr.C.Jaya Prakash etal, JBio sci Tech, Vol 09(2),2021, 01-06
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 5

Figure 2. If the plot converges on 1 for a value of

normalized reaction time lower than 1, and then all

real-time limitations have been met. This CDF

represents the percentage of task activations (on the

Y axis) that experienced a normalized response

time smaller than A (on the X axis). There are two

plots in this figure: Results acquired with a patched

version of Kubernetes are shown in "Real-Time

Container," whereas results obtained with a non-

patched version of Kubernetes are displayed in

"Standard Container." It is clear that all time limits

are being adhered to in the "Real- Time Container"

plot, but the other plot reveals that roughly 10% of

the tasks' activations conclude beyond the

conclusion of the task period.

5 CONCLUSIONS

This work introduced RT-Kubernetes, which

provides theoretically sound support for deploying

multi-core real-time containers. The suggested

design can efficiently support real-time

components of software that must meet strict time

limits in a container environment. It has been

demonstrated through a series of experiments that

the new RT-Kubernetes Scheduler can properly

assign real-time containers to nodes that can

properly serve them (respecting all the temporal

constraints), and that the new RT-Kubelet can

configure the scheduling parameters of the

containers in such a way as to guarantee that the

temporal constraints of the containerized

applications are respected.

REFERENCES

[1] Luca Abeni, Alessio Balsini, and Tommaso

Cucinotta. 2019. Container-Based Real-Time

Scheduling in the Linux Kernel. SIGBED Review

16, 3 (October 2019), 33–38.

[2] Luca Abeni, Alessandro Biondi, and Enrico

Bini. 2019. Hierarchical scheduling of real-time

tasks over Linux-based virtual machines. Journal

of Systems and Software 149 (2019), 234 – 249.

[3] Luca Abeni and Giorgio Buttazzo. 1998.

Integrating Multimedia Applications in Hard Real-

Time Systems. In Proceedings of the IEEE Real-

Time Systems Symposium. Madrid, Spain, 4–13.

[4] Luca Abeni, Ashvin Goel, Charles Krasic, Jim

Snow, and JonathanWalpole. 2002. A

Measurement-Based Analysis of the Real-Time

Performance of Linux. In Proceedings of the 8th

IEEE Real-Time and Embedded Technology and

Applications Symposium. IEEE, 133–142.

[5] Andoni Amurrio, Ekain Azketa, J. Javier

Gutierrez, Mario Aldea, and Michael González

Harbour. 2020. Response-Time Analysis of

Multipath Flows in Hierarchically-Scheduled

Time-Partitioned Distributed Real-Time Systems.

IEEE Access 8 (2020), 196700–196711.

[6] Vasile-Daniel Balteanu, Alexandru Neculai,

Catalin Negru, Florin Pop, and Adrian Stoica.

2020. Near Real-Time Scheduling in Cloud-Edge

Platforms. In Proceedings of the 35th Annual ACM

Symposium on Applied Computing (SAC ’20).

Association for Computing Machinery, New York,

NY, USA, 1264–1271.

[7] Marko Bertogna, Michele Cirinei, and

Giuseppe Lipari. 2009. Schedulability Analysis of

Global Scheduling Algorithms on Multiprocessor

Platforms. IEEE Transactions on Parallel and

Distributed Systems 20, 4 (2009), 553–566.

[8] Steven Blake, David Black, Mark Carlson,

Elwyn Davies, ZhengWang, andWalterWeiss. 1998.

An Architecture for Differentiated Services. RFC

2475. RFC Editor.

[9] Rajkumar Buyya, Christian Vecchiola, and S.

Thamarai Selvi. 2013. Chapter 4 - Cloud

Computing Architecture. In Mastering Cloud

Computing, Rajkumar Buyya, Christian Vecchiola,

and S. Thamarai Selvi (Eds.). Morgan Kaufmann,

Boston, 111–140.

[10] B.E. Carpenter and K. Nichols. 2002.

Differentiated services in the Internet. Proc. IEEE

90, 9 (2002), 1479–1494.

[11] UmaMaheswari C. Devi and James H.

Anderson. 2008. Tardiness bounds under global

EDF scheduling on a multiprocessor. Real-Time

Systems 38 (2008), 133– 189. Issue 2.

[12] Arvind Easwaran, Insik Shin, and Insup Lee.

2009. Optimal virtual cluster-based multiprocessor

scheduling. Real-Time Systems 43, 1 (Sept. 2009),

25–59.

[13] Jörn Kuhlenkamp, Sebastian Werner, Maria

C. Borges, Dominik Ernst, and Daniel Wenzel.

2020. Benchmarking Elasticity of FaaS Platforms

as a Foundation for Objective-Driven Design of

Serverless Applications. In Proceedings of the 35th

Annual ACM Symposium on Applied Computing

(SAC ’20). Association for Computing Machinery,

New York, NY, USA, 1576–1585.

[14] J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I.

Lee, C. Lu, and O. Sokolsky. 2012. Realizing

Compositional Scheduling through Virtualization.

http://www.jbstonline.com/

Dr.C.Jaya Prakash etal, JBio sci Tech, Vol 09(2),2021, 01-06
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 6

In 2012 IEEE 18th Real Time and Embedded

Technology and Applications Symposium. 13–22.

[15] Juri Lelli, Claudio Scordino, Luca Abeni, and

Dario Faggioli. 2016. Deadline Scheduling in the

Linux Kernel. Software: Practice and Experience

46, 6 (2016), 821–839.

http://www.jbstonline.com/

