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ABSTRACT

In this work, we introduce RT-Kubernetes, software architecture for deploying applications that operate in real
time inside of containers on cloud platforms. Implementing Containers with A hierarchical real-time scheduler
based on the Linux SCHED DEADLINE policy ensures CPU scheduling at all times. Initial experimental
findings show that this new architecture is able to provide high temporal isolation among containers co-located
on the same physical hosts, while still delivering timeliness guarantees in the specified responsiveness range.

1 INTRODUCTION

As a result of their widespread adoption and
improvement over the past few years, cloud
computing and containerization technologies are
now a common and efficient means of deploying
applications across shared and plentiful hardware
resources. Can easily expand to meet the needs of
an ever-changing workload [9] while still meeting
the strict time constraints imposed by applications.
Novel cloud robotics and cloud-enhanced industrial
automation scenarios require these technologies,
and recent advancements in hardware and software
infrastructures are beginning to make them suitable
for serving such applications with tight and precise
timing constraints. However, when enhancing real-
time applications with components deployed in
remote cloud infrastructures, it is not as simple to
provide end-to-end responsiveness guarantees. This
occurs for a number of reasons, the most common
of which are networking latency and the processing
times of remote servers.

It is possible to reduce network latency by using
general-purpose Quos management methods over
TCP/IP, such as Diffuser [8, 10], or by switching
back to primarily private cloud infrastructures of
the industrial/robotic plant, where the whole
networking channel is under the owner's exclusive
supervision. Fog/edge architectures [6] are an
option, since they allow for latency-sensitive parts
to be hosted on nodes closer to the end users.

But distant servers with a normal cloud software
stack have a hard time meeting the stringent timing

requirements and scheduling assurances, instead
providing extremely variable processing speeds
that change often based on the other workloads
running on the same cloud server. Elastic control
loops [13] that dynamically adjust the number of
instances of scalable cloud services are often used
to solve this problem in cloud computing and
distributed service-oriented computing.

However, owing to virtualization overheads or
interference from other collocated instances on the
same servers or physical CPUs, this method is
unable to accommodate the variety of processing
times of individual instances and their variations.
This article introduces an orchestration framework
for real-time multi-core containers based on
Cabernets that solves this problem by enabling the
scheduling of real-time containers while
simultaneously providing them with the resources
they need to do their tasks. Results are certainly
ensured.

2 BACKGROUNDS

While the term "container" may be used in a variety
of ways, it is often understood to refer to an
isolated execution environment that contains one or
more processes or threads (tasks). General). Some
of the activities in this profession are characterized
by tight deadlines. They may take the shape of a
Direct Acyclic Graph (DAG) [5, 17], a collection
of recurring or one-off tasks with associated due
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dates, or any other organizational scheme (such as
a hierarchy or network). In any instance, the time
restrictions of an application may be respected by
conducting a detailed real-time schedulability
analysis and then creating suitable scheduling
parameters. Applications operating in virtual
machines (VMs) or containers (containers) may be
guaranteed to execute on time with the help of
approaches like the so-called Compositional
Scheduling Framework [12, 20] (CSF) or others
that rely on analysis of the specific application [1,
5]. Each virtual CPU in this configuration is
allotted a certain percentage of the available
physical CPU time at the beginning of each
session. The Linux SCHED DEADLINE policy
[15] is an example of a reservation-based
scheduler. Typically, a user space containerization
software stack, such as Cabernets, controls the use
of a set of kernel functions or virtualization
technologies to realize containers. Kubernetes
orchestrates the running of containerized
applications across a cluster of computers that may
either serve as master nodes (also known as control
nodes) or as worker nodes (also known as simply
nodes). Containerized apps are executed on worker
nodes while the Kubernetes control plane is hosted
on master nodes.

A "Pod" is the fundamental building block of
Kubernetes, consisting of one or more containers,
networking, and storage resources. Multiple,
independently deployable services (micro services)
make up Kubernetes' distributed architecture. Upon
the wvarious cluster nodes. Specifically, the
Kubernetes Scheduler (which is hosted on the
master node) is in charge of deciding which worker
node a Pod will be executed on, and the Sublets
(which are hosted on each worker node) are in
charge of managing how Pods are run.

The Sublet initiates the containers that make up the
Pods by calling a container runtime; many
container runtimes are available, including the
widely used Dicker. Both hypervisor-based VMs
(as in kite containersl) and OS-level virtualization
based on Linux control groups and namespaces are
viable options for the container runtime's
implementation of containers. By reserving
resources for the hypervisor's virtual CPUs during
scheduling, real-time assurances may be made.
This necessitates a reservation-based scheduler
inside the hypervisor (Oxen, for example,
implements the Real-Time Deferrable Server —
RTDS — algorithm [14]), whereas hosted
hypervisors like KVM may employ the SCHED
DEADLINE scheduling policy to service their
virtual CPU threads [2]. Implementing the
containers with Linux control groups and
namespaces necessitates a change to the mainline
Linux scheduler in order to provide a reliable
response time. The SCHED DEADLINE policy is
used by the Hierarchical CBS (HCBS) scheduler
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[1] to schedule groups of jobs (groups, in Linux
parlance), and it may be extended to containers
(ensuring that each CPU in the container can run
for a certain amount of time and every period%).
As a result of this effort, Cabernets is now able to
provide real-time assurances to containerized
applications by supporting the HCBS scheduler.
Lastly, it is not enough to just choose a suitable
scheduling strategy when containerizing real-time
systems; the algorithm must also be implemented
correctly, therefore minimizing the performance
degradation that might otherwise result from
improper containerization. Bring kernel latencies
[4] down to reasonable levels. Therefore, the host
computer requires the Linux Pre-empt- RT patch
set [19].

3 DESIGNS AND
IMPLEMENTATION

Our real-time containerization platform is based on
a suitable CPU scheduling method, a low-latency
host kernel, and the other components outlined in
Section 2. (Or bare-metal hypervisor), and some
kind of container management software that
facilitates the proper implementation of the
previously specified CPU scheduling technique.
Existing schedulers may be used for the CPU
scheduling mechanism, including the Xen RTDS,
the Linux kernel's SCHED DEADLINE policy, and
the HCBS scheduling patch (enabling to utilize
SCHED DEADLINE for groups of tasks rather
than individual processes or threads). As an
alternative, the container management software
necessitates tweaks to current open-source
initiatives. This document details how this
functionality was added to RT-Kubernetes.

Worker Node

SCHED_DEADLINE
Hostl OS5 Kernel|

Figure 1: Real-Time Containers scheduling
architecture.

As the major contribution of this study, our update
to the Kubernetes software stands out.

Scheduling system design, as shown in Figure 1.
Hub for every employee (with " CPU cores) is
capable of hosting multiple containers, and the 8Ch
container can use all eight cores to power real-time
programs. Each of these cores is assigned work
through a CPU reservation, with &8 period units
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per period%38 set aside for the container's real-time
activities or threads. The wuser provides
RTKubernetes with information about the timing
requirements of the hosted applications during
container instantiation, and RTKubernetes then
chooses the appropriate worker node on which to
start each container and assigns the correct 8, &8
and%8 scheduling parameters to the container.
Exploiting the multi-processor resource model
(MPR) in [12] is one method of doing this. In light
of the foregoing, RTKubernetes must support the
description of the temporal requirements (or the
real-time constraints) of the application that is to be
containerized, and use this description to compute
the scheduling parameters of the container (the
runtime and period of the real-time control group,
or the runtime and period of the virtual CPU
threads if a hypervisor is used). Next, it needs to
generate the required containers/VMs, configure
them, and pick the node where they will be
launched (this includes configuring the host and
guest schedulers). The application will be deployed
to Kubernetes and operate in a Pod according to the
specifications defined in a YAML "manifest" file.
This manifest is sent to the Kubernetes API server
through a command line tool. (kubectl); thereafter,
the API server talks to the Kubernetes Scheduler to
have a worker node assigned to the Pod, and the
Kubelet on that node receives the YAML
description. The container is then created and
parsed by the Kubelet. As a result, Kubernetes
needs to have a few crucial functionalities
implemented in order to handle real-time
applications. To begin, the manifest files' format
has to be expanded to include the data necessary to
meet the application's real-time demands. The
Kubernetes Scheduler then has to be adjusted such
that a worker node is chosen to execute a Pod only
if it is capable of hosting the containerized
application without causing any missed deadlines.
Last but not least, Kubelet has to be adjusted so
that it can work in tandem with the deadline
scheduler (in this case, to schedule the containers
inside of Pods using the right algorithm and
settings).

All the real-time jobs that make up the program,
together ~ with  their temporal parameters,
restrictions, and dependencies, would be
fascinating to add to the application's description in
the manifest file. Kubernetes uses this data to
determine how many CPU cores the container
needs and how to schedule them (the runtimes and
durations of the CPU reservations). This study and
design is often application-specific [1], therefore it
cannot be integrated into a standard container
management tool. Therefore, the current version of
the RT-Kubernetes manifest files provides the
runtime and term for the container's reservations, as
well as the number of CPU cores utilized by the
container (a similar technique is used by RT-
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OpenStack [21] as well). In summary, the format
has been updated to provide the specification of an
"rt runtime," an "rt period," and an "RT cpu" field
(the number of cores on which the container may
run real-time processes or threads). Some container
runtimes (because this interface is part of the
standard RT control group) already offer support
for "rt-runtime" and "rt-period," while others (like
Dicker) do not. So, the Sublet has been updated in
this study to make advantage of these settings apart
from the container runtime. Also of note is how the
new "rt CPU" feature differs from the older "cpu"
attribute that Kubernetes currently supports. The
new property has no effect on anything but
scheduling. When the HCBS scheduler is utilized,
processes or threads that need real-time scheduling
(SCHED FIFO or SCHED RR) will be prioritized.
The HCBS scheduler makes it feasible to design a
container with a high number of CPU cores;
limiting real-time tasks to a restricted fraction of
those cores (this is not possible when a hypervisor
is used). The new syntax makes it possible to
reserve a certain number of CPU cores for a certain
length of time (in the form of "rt runtime") and for
a specific container. The kernel's HCBS scheduler
will not schedule real-time jobs on CPU cores with
0 runtime, therefore this is achieved by creating a
multi-core CPU reservation on the physical host
with the specified runtime and period. Since a
(&,%) reservation can only be properly served by
the host CPU scheduler if an admission test is
passed (guaranteeing & every % execution time
units on AC 2?D CPUs), RT-Kubernetes must
ensure that a Pod is started on a worker node only
if the reservations for that Pod pass the admission
test on that node. As was noted, new functionality
requires a change to the Kubernetes Scheduler,
which determines which worker node a Pod will be
launched on. Depending on the desired level of
granularity in terms of real-time assurances, a
number of alternative approaches are feasible when
creating an admission test in the Kubernetes
Scheduler (hard [7, 16] or soft [11]).

The most basic kind of admission test calculates the
utilization * as the sum of the utilizations *§ =
&8/%S8 for all the reservations (&8, %8) on a node
and compares it with a predetermined threshold.
Although not the most efficient, the Cabernets
Scheduler has been updated to include a utilization-
based admission test so that it may be used to
provide both hard and soft real-time guarantees. In
particular, the RT-Cabernets Scheduler guarantees
that the sum of all containers' real-time usage 8 *8
on a worker node does not exceed the limit you set.
It's important to note that this is similar to what the
default Kubernetes Scheduler does for the
"Guaranteed" Quos class; however, the RT-
Kubernetes Scheduler is better equipped to deal
with the needs of real-time tasks and is more in line
with the schedulability guarantees provided by real-
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time theory. If this restriction is set to (" + 1)/2
(where " is the number of physical cores present on
the node), then the reservations are guaranteed to
be schedulable (provided that RT-Sublet utilizes
proper methods to correlate CPU reservations to
physical CPU cores — see the next paragraph).

Sublet on a worker node is responsible for
launching the Pod's containers after a worker node
has been selected by the Kubernetes Scheduler. In
light of this need, Kubelet has been modified to
provide time-sensitive scheduling. Because of the
containers, we have RT-Kubelet. While By default,
Kubelet use the Linux Container File System (CFS)
to plan when containers will run. RT-Kubelet uses
CFS quotas and a timekeeper (similar to the POSIX
SCHED OTHER policy) to control resource
allocation. Has real-time runtime and duration
tuning for containers. collection depending on
values specified in the manifest file to guarantee
access to the HCBS planner.= The program failed
to launch on any of the actual system's CPU cores
since the initial HCBS scheduler always allocated
the necessary amount of time for each run. A CPU
switching option labelled rt (which lets you set
runtime to be available exclusively on a certain
processor). Constraint on the available processors.
The scheduler has thought of a way to fix this. The
redesigned user interface allows for simultaneous
scheduling of many runs. Real-time processes
within a container are not allowed to execute on
these CPU cores, enabling RT-Kubelet to establish
a goal runtime of zero. Whenever RT-Kubelet
starts a container with rt cpu > " (where " is the
total number of physical cores), the scheduler is
responsible for determining on which actual cores
the container's real-time tasks will be carried out.
Applying the "What-Fits-Worst" (WF) principle to
What-Fits-First the (FF) heuristics have been
developed, and they may be used on many of the
options below. Worst-Fit helps to distribute the
real-time burden. The utilized admissions control
mechanism is compatible with First-Fit, allowing
the RT-Kubernetes Scheduler to more efficiently
distribute work over all available CPU cores. When
it comes to serving containers in real time, the
"conventional" method is based on statically
allocating a complete set of CPU cores to the
container (using, for instance, Docker Compose).
Guaranteed service quality thanks to Kubernetes'
"fixed" CPU management approach
(GuaranteedQoS policy). Over provisioning the
container's resources is required, but the strategy
opens the way for consistent real-time functioning
for containerized applications. Further, each and
every computer's brain Regardless matter how little
of the cores' immediate responsibilities are actually
being used by the application, no other containers
may utilize the cores belonging to the container.
Instead, RT-Kubelet may employ the HCBS
scheduler to allocate just a subset of CPUs to time-
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sensitive tasks, allowing containers to share the
remaining CPUs.

4 EXPERIMENTAL VALIDATIONS

Both the Kubernetes Scheduler and Kubelet, upon
which the proposed changes are based, are now
open-source2. A wide range of hardware, from a
Comparison of a 4-core Intel NUC against a 40-
core Xeon server Running a CPU-intensive
program  within  containers  with  different
scheduling settings and checking that the
application gets the allotted amount of time
validates RT-ability Kubelet's to appropriately
drive the HCBS scheduler in the first set of tests.
Multiple simultaneous real-time experiments
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Figure 2 shows the experimental cumulative
distribution functions (CDFs) for the standard
deviations of the measured response times in a real-
time and a standard container. Parallel container
processes have been initiated, and their correctness
has been confirmed. Containerized workloads are
scheduled on available CPU cores (no core is
overcrowded and all containers are allowed to run
for the allotted time). We have now confirmed that
RT-Kubernetes is able to adhere to the time-based
requirements of apps. This was accomplished by
monitoring the latency of several tasks inside a
containerized real-time application. Parameters for
the container's scheduler have been calculated in
accordance with MPR [12], ensuring that all tasks
complete in less time than their allotted periods.
Testing has been done to ensure that all deadlines
are fulfilled when the container's scheduling
parameters are allocated based on the MPR
analysis for a variety of real-time task counts (from
4 to 10), execution timings and durations (created
at random), and total utilizations (* = 0.5 to * =
1.8).

For a real-time application hosted in a container,
the experimental Cumulative Distribution Function
(CDF) of the normalized response times (response
times divided by the task duration) is shown in
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Figure 2. If the plot converges on 1 for a value of
normalized reaction time lower than 1, and then all
real-time limitations have been met. This CDF
represents the percentage of task activations (on the
Y axis) that experienced a normalized response
time smaller than A (on the X axis). There are two
plots in this figure: Results acquired with a patched
version of Kubernetes are shown in "Real-Time
Container," whereas results obtained with a non-
patched version of Kubernetes are displayed in
"Standard Container." It is clear that all time limits
are being adhered to in the "Real- Time Container"
plot, but the other plot reveals that roughly 10% of
the tasks' activations conclude beyond the
conclusion of the task period.

5 CONCLUSIONS

This work introduced RT-Kubernetes, which
provides theoretically sound support for deploying
multi-core real-time containers. The suggested
design can efficiently support real-time
components of software that must meet strict time
limits in a container environment. It has been
demonstrated through a series of experiments that
the new RT-Kubernetes Scheduler can properly
assign real-time containers to nodes that can
properly serve them (respecting all the temporal
constraints), and that the new RT-Kubelet can
configure the scheduling parameters of the
containers in such a way as to guarantee that the
temporal  constraints of the containerized
applications are respected.
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